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Figure 1: Examples of a snake model with Gabor noise sampled on it. The bottom row shows the noise components and the control maps
used to weight particular parameters of the noise. The left-most example shows standard Gabor noise, in the middle the frequency of the
harmonic is weighted by a hat-profile, and in the right example the noise scale and the frequency are weighted by respective profiles. In all
three cases the noise is evaluated in the model’s uv-domain.

Abstract

Gabor noise is a powerful technique for procedural texture gener-
ation. Contrary to other types of procedural noise, its sparse con-
volution aspect makes it easily controllable locally. In this paper,
we demonstrate this property by explicitly introducing spatial vari-
ations. We do so by linking the sparse convolution process to the
parameterization of the underlying surface. Using this approach, it
is possible to provide control maps for the parameters in a natural
and convenient way. In order to derive intuitive control of the re-
sulting textures, we accomplish a small study of the influence of the
parameters of the Gabor kernel with respect to the outcome and we
introduce a solution where we bind values such as the frequency or
the orientation of the Gabor kernel to a user-provided control map
in order to produce novel visual effects.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture
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1 Introduction

Procedural textures play an important role in the field of computer
graphics. They are used to produce small-scale features and struc-
tural details in order to enhance the appearance of rendered objects.
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Their major disadvantage, however, is their rather arbitrary way of
control. Generally, it is difficult to generate very specific outcomes
due to the quite large number of non-linear parameters.

One recently introduced procedural noise function is Gabor noise
[Lagae et al. 2009], which has several interesting properties: it
offers meaningful spectral control, provides anisotropy, can be
mapped to surfaces without parameterization, can be filtered and,
finally, can be evaluated in real-time [Lagae et al. 2011]. This set
of properties makes it suitable for many computer graphics appli-
cations.

However, traditional setup-free Gabor noise also lacks what can be
referred to as local spatial control. Procedural noise in general is
mostly intended to be generated uniformly on a surface or in a vol-
ume. That is, if a desired texture exhibits fully, partially or semi-
repetitive elements (e.g., scales or cells), traditional Gabor noise as
well as any other types of noise do not provide a way to achieve
it. However, many natural patterns show notable spatial repetitive-
ness, always with a certain degree of local variations. For instance,
a snake may have scales that are larger on ventral parts than on
dorsal parts (Fig. 1).

To address this issue, we propose to evaluate the noise exclusively
within the 2-dimensional model’s uv-space. In fact, one major ad-
vantage of traditional Gabor noise is the ability to create setup-free,
scalable, and rather controllable procedural textures. By utilizing
the underlying parameterization we trade the setup-free property
for other advantages: First, as observed by Lagae et al. [Lagae
et al. 2009], Gabor noise in 2D space is 10 times faster than the
surface noise evaluated in 3D, which makes its use in real-time ren-
dering much more comfortable. Second, and more important than
the search for performance gain, evaluation in the uv-space pro-
vides a way to easily control noise variations and therefore extend
the expressiveness and controllability of Gabor noise.

Indeed, Gabor noise has a notable property that is useful in this
context: it is a kernel-based noise, and as such it can be controlled
locally. Noise parameters are not defined at a global level and can
be modified according to the location where the noise is evaluated.



In order to control kernel parameters in a natural way, we will focus
on pure 2D evaluation, since it is hard to conceive how heteroge-
neous Gabor noise may look in 3D or higher dimensions. Of course,
moving to 2D space heavily relies on the surface parameterization,
but we consider that uv-coordinates and texture atlas generation are
well-known tools in the world of computer graphics (e.g., [Lévy
et al. 2002]), and are fully integrated into todays 3D modeling soft-
ware.

In this paper, as our first contribution, we provide an overview of the
visual effects of spatially varying Gabor noise parameters in Section
3.1. Further, we redefine the parameters and we show examples on
how to control this spatial variations in order to add repetitiveness
into procedural textures in Section 3.2.

2 Previous Work

Most of the work on Gabor noise is due to Ares Lagae and co-
workers. For an exhaustive overview of related work, we refer the
reader to their papers. In the chronological order, Lagae et al. [La-
gae et al. 2009] describes the original concept of Gabor noise bring-
ing together the Gabor kernel function, and the sparse convolution
evaluation (random pulse process) [Lewis 1989]. Follow-up papers
[Lagae et al. 2011; Lagae and Drettakis 2011] provide improve-
ments (e.g., filtering) and analysis in order to introduce better con-
trol of the noise function. The most recent article [Galerne et al.
2012] presents a generalized noise process that aims at the recon-
struction of Gabor functions from example textures. Another work
utilizes Gabor noise as a basis for non-photorealistic 2D stylization
[Benard et al. 2010].

The idea of local control is generally not new, i.e., de Leeuw and
Van Wijk [de Leeuw and Van Wijk 1995] also took advantage of
kernel-based functions for vector fields visualization and describe
how to locally alter a noise in order to adopt vector field charac-
teristics. Gabor noise has the intrinsic ability to visualize a vector
field since it is anisotropic, as suggested by Lagae et al. [Lagae
et al. 2009] in the original paper.

3 Spatially Varying Gabor Noise

Gabor noise is a kernel-based procedural noise, which means that it
is defined as a sum of a large number of functions, denoted as ker-
nels, which are placed at random positions, denoted as impulses.
The idea is based on (1) the Gabor filter g as a kernel, and (2)
sparse convolution process to distribute the impulses. The Gabor
kernel is defined through a set of parameters controlling its aspects,
which can vary randomly for each impulse (within a certain range)
allowing the generation of “noisy” outcomes.

In 2D, the Gabor kernel g is the product of a sine wave in the plane
and a Gaussian envelope:

g(x, y) = Ke
−πa2(x2+y2)

cos (2π F0 (x cosω0 + y sinω0)) . (1)

This function is evaluated at each point (xi, yi) generated by a
Poisson distribution of the sparse convolution, and weighted by a
random weight wi chosen from a uniform distribution in [−1, 1],
which results in the noise value n:

n(x, y) =
∑
i

wig(x− xi, y − yi) . (2)

The parameters used in Eq. (1) respectively control the width (a)
and the magnitude (K) of the Gaussian, as well as the frequency
(F0) and orientation (ω0) of the harmonic in the plane. So as to
strengthen noise’s expressiveness, two additional parameters have
been added in the procedural generation: Fs and ωs, which are the

(a): anisotropic F0

(b): sparsly sampled anisotropic F0

(c): isotropic F0

(d): ω0

(e): Fs

(f): ωs

(g): a

(h): Fk

(i): rk

Figure 2: Noise samples illustrating variations of parameters.

frequency and orientation spread. Thus, frequency and orientation
defined per impulse i are chosen uniformly in the intervals [F0±Fs]
and [ω0 ± ωs] respectively. Additionally, one should note that a
noise function is re-scaled to the range [0, 1] to be interpreted as a
grayscale value, hence, the scale parameter K can be omitted since
it only controls the range of the function. Finally, all results in our
comparisons have been computed with the same impulse density,
which is another possible parameter of Gabor noise. The number
of impulses per kernel is 50 if not stated otherwise.

3.1 Parameter Influence

In order to better understand the influence of each parameter a, F0,
ω0, Fs and ωs, we provide an overview in Figure 2 where we let
one parameter vary across a chosen range and fix the others. The
samples have been chosen according to their visual aspect. They
are all defined within ranges that present the most distinguishable
variation of the given parameter. This way, the contribution of each
parameter offers very specific visual characteristics.

All examples show linear variations of one parameter except for
a. To evaluate the impulses, our algorithm uses a 2D grid with a
predefined cell size, directly depending on a. Therefore we are not
able to make a vary linearly since a grid cannot support continuous
variations. To bypass this constraint we use the method proposed



by Lagae et al. [Lagae et al. 2011] where values are interpolated
between multiple grids with halving cell-sizes in order to create
a piecewise smooth variation of the noise (see example shown in
Figure 2g).

Interestingly, by detailed observation there are remarkable phenom-
ena, like for instance the evolution of the frequency F0 for both
anisotropic and isotropic noises over a wide range. Both samples
show that the variation of the frequency is less and less noticeable.
This phenomenon is bound to our eye’s ability to perceive contrasts
and to visualize detail. Contrast sensitivity diagrams or Mach-band
charts illustrate how our eye responds to contrast variations. To
show it more explicitly, we reduce the impulse density in order to
see how sine-waves of the impulses evolve with a varying F0. This
is shown in the example in Fig. 2b, where only a few impulses from
those contained in the top example (which has 50 times more im-
pulses) are shown. There we can see how difficult it is to estimate
the number of “stripes” of a particular Gabor “spot” as we move to
the left. A stripe corresponds to an extrema of the sine wave in the
kernel. Our eye hardly distinguish an impulse with 4 white stripes
from one with 6 similar stripes, while it can easily distinguish it
from an impulse with only 2 white stripes.

The phenomenon described upper has some consequences in the
design of a noise for a specific texture (reptile scales, leather, mar-
ble. . . ). If we want our noise to have a certain level of detail—that
is if we want to define how many stripes will be visible per impulse,
we have to adjust both a and F0. It appears that redefining Gabor
noise parameters may help design textures in a more convenient
way. We propose new parameters in the following.

Kernels shall have a finite area, so that the noise can be evaluated
in real-time. In our case (similarly to [Lagae et al. 2009]), this
area is arbitrary defined as the Gabor function support, cut at 20th
maximum. We take advantage of this to define an other parameter
that covers the level of detail in the noise function more intuitively:
the frequency per kernel radius that describes best at which scale
the noise is defined. For this reason, we propose to replace a with
the kernel radius rk and the frequency per kernel Fk (it equals the
number of periods in the kernel area). In such a way we obtain a
new set of parameters {rk, Fk, ω0, Fs, ωs}:

rk = 1
a

√
ln(20)
π

Fk = F0 · rk .
(3)

In Fig. 2a we see a linear variation of F0, while in Fig. 2h we see
a linear variation of Fk. The kernel radius rk is basically inversely
proportional to a, shown in Fig. 2i. We believe our new parameters
rk and Fk to be more intuitive than a and F0, from the standpoint
of visual aspect, while remaining mathematically meaningful in the
Fourier domain of the noise.

One should remark that the samples shown in Figures 2g and 2i
do not present a truly linear variation of the parameters. The grid
on which the algorithm is based prevents such variations. Instead,
interpolation between noises with pre-defined values for a (and rk)
is used, according to the method presented in [Lagae et al. 2011].

3.2 Controllable Spatial Variations

In the study above we associate visual characteristics with both old
and new parameters: we can adjust the level of detail with Fk, con-
trol direction and give the impression of movement with ω0, make
the aspect of visible features vary with Fs and control dispersion
and isotropy with ωs. Based on these characteristics, we will now
provide examples.

The simplest and most intuitive way to control variations is to use
a control map. Such a map is easily implemented in form of a

Figure 3: Examples of textures with procedurally varying direction
(ω0): (left) woven straw, (right) curly fur.

Figure 4: Straw-texture with procedurally varying direction (ω0).

2D texture that serves as a lookup for particular parameters which
are fetched on-the-fly during the noise sampling procedure. In our
implementation, the four channels from the control map (RGBA)
are associated with 4 of the 5 Gabor parameters (e.g Fk, ω0, Fs
and ωs). Color values give coefficients that are added to base noise
parameters for each impulse. An example is shown in Figure 1.
Each time an impulse is generated, we pick up the value at impulse
location and perform the following changes: Fk,i = Fk,b+s, where
Fk,i is the value of the frequency per kernel for current impulse,
Fk,b is its value from base noise, and s is the fetched value.

Working with 2D control maps offers one major benefit. In the
uv-space, compared to working on surfaces, visual control is easier
and more intuitive (cf. Figure 5) . In fact, in what Lagae et al.
[Lagae et al. 2009] call surface noise, impulses are generated in
3 dimensions and then projected on the tangent space. Building a
3D control map for the reptilian texture would be much harder than
what we did in 2D space. If we want to work with concrete meshes,
e.g a snake, it would be easy to draw its ventral part on a texture
atlas with a painting tool (Fig. 1). Artists already use painting tools
to entirely colorize models, thus it would not be hard to proceed
similarly to draw only a few strokes to control noise variations.

In addition to control maps, we also experimented with procedural



Figure 5: Influence of the underlying uv-parameterization of the model (bottom row) on the actual Gabor noise sampling (top row).

techniques that can be useful to define regular patterns. In our ex-
ample of a woven straw texture, we simply define a checkerboard
where first type of cells are oriented in u direction (ω0 = 0) and
second type in v direction (ω0 = π

2
) to imitate woven structure.

Since the checkerboard is defined on impulse parameters and not
directly on noise values, we can see that cells really interlace each
other. Moreover, on this texture, we did an additional treatment to
the cells, i.e., we also procedurally modified wi, the random weight
associated to an impulse that appears in Equation (2). Instead of
picking a random value between [−1, 1] as in original Gabor noise,
we choose wi between [−1, wmax] where wmax enables the illu-
sion of bumps in each cell. Following the direction of the noise (u
or v depending on the cell), wmax starts from −1 at one border of
the cell, rises to 1 at the middle and then decrease to −1 at the op-
posite border of the cell. This way, cells seem to be curved, what
provides the illusion of woven straw (cf. Fig 3). Spatial variation of
wi was not part of the analysis in Section 3 because it is not really
specific to Gabor noise process, but it still has interesting effects.

Finally, in the examples in Figures 1 and 3 we have used normal
mapping where we have computed the normal directly from the
Gabor noise function in the shader. Since we have a complete def-
inition of the function n(·) at one point (x, y), we can easily com-
pute∇n using backward (or forward) differences by evaluating the
function in the local neighborhood of (x, y), followed by the com-
putation of the normal in the local tangent space. The resulting
vector can then be added to the original normal vector as a dis-
placement vector.

4 Conclusion

In this paper we present an overview of spatially varying Gabor
noise, test all available parameters, and characterize the visual ef-
fect of each one. Based on our observations we provide a new defi-
nition of the set of parameters. We believe that the set we proposed
offers a more intuitive way to control the noise function when pa-
rameters spatially vary.

Moreover, we provide additional examples where we take advan-
tage of our proposition to sample the noise in 2D directly in the
models uv-domain. In the presented cases, the procedural control
of parameters is fairly simple and the results are quite promising.

We are convinced that a full range of procedures can be developed
in future work in order to considerably extend the expressive power
and local control of Gabor noise. For instance, we can think of
building fur or hair where movement follows many strands of hair
that could also be procedurally generated.
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